Advertisements
Advertisements
प्रश्न
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
उत्तर
We have, `(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
⇒ `((7 + sqrt(5))^2 - (7 - sqrt(5))^2)/((7 - sqrt(5))(7 + sqrt(5))) = a + 7/11 sqrt(5)b`
⇒ `([7^2 + (sqrt(5))^2 + 2 xx 7 xx sqrt(5)] - [7^2 + (sqrt(5))^2 - 2 xx 7 xx sqrt(5)])/(7^2 - (sqrt(5))^2) = a + 7/11 sqrt(5)b`
⇒ `(49 + 5 + 14sqrt(5) - 49 - 5 + 14sqrt(5))/(49 - 5) = a + 7/11 sqrt(5)b` ...`[("Using identity" (a + b)^2 = a^2 + 2ab + b^2),((a - b)^2 = a^2 - 2ab - b^2),("and" (a - b)(a + b) = a^2 - b^2)]`
⇒ `(28sqrt(5))/44 = a + 7/11 sqrt(5)b`
⇒ `7/11 sqrt(5) = a + 7/11 sqrt(5)b`
⇒ `0 + 7/11 sqrt(5) = a + 7/11 sqrt(5)b`
On comparing both sides, we get
a = 0 and b = 1
APPEARS IN
संबंधित प्रश्न
Classify the following numbers as rational or irrational:
`2-sqrt5`
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
Classify the following number as rational or irrational:
`(2sqrt7)/(7sqrt7)`
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`
Simplify:
`(1/27)^((-2)/3)`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.