Advertisements
Advertisements
प्रश्न
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
उत्तर
Let `E = 4/sqrt(3)`
For rationalising the denominator, multiplying numerator and denominator by `sqrt(3)`, we get
`E = 4/sqrt(3) xx sqrt(3)/sqrt(3)`
= `(4sqrt(3))/3`
= `4/3 xx 1.732` ...[Put `sqrt(3)` = 1.732]
= `6.928/3`
= 2.309
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following
`sqrt2/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
`root(4)root(3)(2^2)` equals to ______.
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`