Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
उत्तर
We know that rationalization factor for `2sqrt2 + 3sqrt3` is `2sqrt2 - 3sqrt3`. We will multiply numerator and denominator of the given expression `(2sqrt3 - sqrt5)/(2sqrt3 + 3sqrt3)` by `2sqrt2 - 3sqrt3` to get
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3) xx (2sqrt2 - 3sqrt3)/(2sqrt2 - 3sqrt3) = (2 xx 2 xx sqrt3 xx sqrt2 - 2 xx 3 xx sqrt3 xx sqrt3 - 2 xx sqrt5 xx sqrt2 + 3 xx sqrt5 xx sqrt3)/((2sqrt2)^2 - (3sqrt3)^2)`
`= (4sqrt(3 xx 2) - 6 xx (sqrt3)^2 - 2 xx sqrt(5 xx 2) + 3 xx sqrt(5 xx 3))/(4 xx 2 - 9 xx 3)`
`= (4sqrt6 - 6 xx 3 - 2sqrt10 + 3 sqrt15)/(8 - 27)`
`= (4sqrt6 - 18 - 2sqrt10 + 3sqrt15)/(-19)`
`= (18 + 2sqrt10 - 3sqrt15 - 4sqrt6)/19`
Hence the given expression is simplified to `(18 + 2sqrt10 - 3sqrt15 - 4sqrt6)/19`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Rationalise the denominator of each of the following
`1/sqrt12`
Rationalise the denominator of the following
`sqrt2/sqrt5`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
Value of (256)0.16 × (256)0.09 is ______.
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`