Advertisements
Advertisements
प्रश्न
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.
उत्तर
We have, `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`
= `(4(3sqrt(3) + 2sqrt(2)) + 3(3sqrt(3) - 2sqrt(2)))/((3sqrt(3) - 2sqrt(2))(3sqrt(3) + 2sqrt(2))`
= `(12sqrt(3) + 8sqrt(2) + 9sqrt(3) - 6sqrt(2))/((3sqrt(3))^2 - (2sqrt(2))^2` ...[Using identity, (a + b)(a – b) = a2 – b2]
= `(21sqrt(3) + 2sqrt(2))/(27 - 8)`
= `(21sqrt(3) + 2sqrt(2))/19`
= `(21 xx 1.732 + 2 xx 1.414)/19` ...`["Put" sqrt(2) = 1.414 "and" sqrt(3) = 1.732]`
= `(36.372 + 2.828)/19`
= `39.2/19`
= 2.06316
= 2.063
APPEARS IN
संबंधित प्रश्न
Represent `sqrt9.3` on the number line.
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
Express each one of the following with rational denominator:
`(b^2)/(sqrt(a^2 + b^2) + a)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`