Advertisements
Advertisements
प्रश्न
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.
उत्तर
Given: `a = (3 + sqrt(5))/2`
The value of a2 will be `a^2 = ((3 + sqrt(5))/2)^2`
= `(9 + 5 + 6sqrt(5))/4`
= `(14 + 6sqrt(5))/4`
= `(7 + 3sqrt(5))/2`
Now, `1/a^2 = 2/(7 + 3sqrt(5))`
= `2/(7 + 3sqrt(5)) xx (7 - 3sqrt(5))/(7 - 3sqrt(5))`
= `(2(7 - 3sqrt(5)))/(7^2 - (3sqrt(5))^2`
= `(2(7 - 3sqrt(5)))/(49 - 45)`
= `(2(7 - 3sqrt(5)))/4`
= `(7 - 3sqrt(5))/2`
The value of `a^2 + 1/a^2` is
`a^2 + 1/a^2 = (7 + 3sqrt(5))/2 + (7 - 3sqrt(5))/2`
= `(7 + 3sqrt(5) + 7 - 3sqrt(5))/2`
= `14/2`
= 7
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
`root(4)root(3)(2^2)` equals to ______.
Value of (256)0.16 × (256)0.09 is ______.
Simplify the following:
`4sqrt12 xx 7sqrt6`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.