Advertisements
Advertisements
Question
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
Solution
The given number is `1/(sqrt5 + sqrt2)`
On rationalising the denominator,
⇒ `1/(sqrt5 + sqrt2) = 1/(sqrt5 + sqrt2) xx (sqrt5 - sqrt2)/(sqrt5 - sqrt2)`
We know that (a + b) (a - b) = a2 - b2
⇒ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/((sqrt5)^2 - (sqrt2)^2)`
⇒ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/(5 - 2)`
∴ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/3`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of each of the following
`1/sqrt12`
Rationalise the denominator of the following
`sqrt2/sqrt5`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.