Advertisements
Advertisements
Question
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
Solution
We know that rationalization factor for `sqrt5 - sqrt3` and `sqrt5 + sqrt3` are `sqrt5 + sqrt3` and `sqrt5 - sqrt3` respectively.
We will multiply numerator and denominator of the given expression `(sqrt5 + sqrt3)/(sqrt5 - sqrt3)` and `(sqrt5 - sqrt3)/(sqrt5 + sqrt3)` by `sqrt5 + sqrt3` and `sqrt5 + sqrt3` respectively, to get
`(sqrt5 + sqrt3)/(sqrt5 - sqrt3) xx (sqrt5 + sqrt3)/(sqrt5 + sqrt3) + (sqrt5 - sqrt3)/(sqrt5 + sqrt3) xx (sqrt5 - sqrt3)/(sqrt5 - sqrt3) = ((sqrt5)^2 + (sqrt3)^2 + 2 xx sqrt5 xx sqrt3)/((sqrt5)^2- (sqrt3)^2)`
`(5 + 3 + 2sqrt15)/(5- 3) + (5 + 3 - 2sqrt15)/(5 - 3)`
`= (5 + 3 + 2sqrt15 + 5 + 3 - 2sqrt15)/2`
= 16/2
= 8
Hence the given expression is simplified to 8
APPEARS IN
RELATED QUESTIONS
Classify the following numbers as rational or irrational:
`2-sqrt5`
Rationalise the denominator of the following:
`1/sqrt7`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
\[\sqrt{10} \times \sqrt{15}\] is equal to
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Value of (256)0.16 × (256)0.09 is ______.
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`