Advertisements
Advertisements
Question
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Solution
We know that `(a + b)^2 = a^2 + b^2 + 2ab`. We will use this property to simplify the expression
`(2sqrt5 + 3sqrt2)^2`
`∴ (2sqrt5 + 3sqrt2)^2 = (2sqrt5)^2 + (3sqrt2)^2 + 2 xx 2sqrt5 xx 3 sqrt2`
`= 2sqrt5 xx 2sqrt5 + 3sqrt2 xx 3sqrt2 + 2 xx 2sqrt5 xx 3sqrt2`
`= 2 xx 2sqrt(5 xx 5) + 3 xx 3sqrt(2 xx 2) + 2 xx 2 xx 3sqrt(5 xx 2)`
`= 4(5^2)^(1/2) + 9(2^2)^(1/2) + 12sqrt10`
`= 4 xx 5^1 + 9 xx 2^1 + 12sqrt10`
` = 20 + 18 + 12sqrt10`
`= 38 + 12sqrt10`
Hence the value of expression is `38 + 12sqrt10`
APPEARS IN
RELATED QUESTIONS
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify of the following:
`root(4)1250/root(4)2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
In the following determine rational numbers a and b:
`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
The rationalisation factor of \[\sqrt{3}\] is
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`