Advertisements
Advertisements
Question
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
Solution
Let `E = (sqrt(10) - sqrt(5))/2`
= `(sqrt(5) sqrt(2) - sqrt(5))/2`
= `(sqrt(5)(sqrt(2) - 1))/2` ...`[∵ sqrt(10) = sqrt(2) sqrt(5)]`
= `(2.236(1.414 - 1))/2`
= 1.118 × 0.414
= 0.46285 ≅ 0.463
APPEARS IN
RELATED QUESTIONS
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Value of (256)0.16 × (256)0.09 is ______.
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`