Advertisements
Advertisements
Question
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Solution
Let `E = sqrt(40)/sqrt(3)`
For rationalising the denominator, multiplying numerator and denominator by `sqrt(3)`,
`E = sqrt(40)/sqrt(3) xx sqrt(3)/sqrt(3)`
= `sqrt(40 xx 3)/(sqrt(3))^2`
= `sqrt(120)/3`
= `sqrt(2 xx 2 xx 2 xx 5 xx 3)/3`
= `2/3 sqrt(30)`
APPEARS IN
RELATED QUESTIONS
Simplify of the following:
`root(4)1250/root(4)2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
Express the following with rational denominator:
`1/(3 + sqrt2)`
\[\sqrt{10} \times \sqrt{15}\] is equal to
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.