Advertisements
Advertisements
Question
Rationalise the denominator of the following:
`1/sqrt7`
Solution
The given number is `1/sqrt7`
On rationalising the denominator
⇒ `1/sqrt7 = 1/sqrt7 xx sqrt7/sqrt7`
∴ `1/sqrt7 = sqrt7/7`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of the following
`sqrt2/sqrt5`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
Write the rationalisation factor of \[\sqrt{5} - 2\].
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.