Advertisements
Advertisements
Question
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Solution
We know that rationalization factor for `sqrt11 + sqrt7` is `sqrt11 - sqrt7`. We will multiply numerator and denominator of the given expression `(sqrt11 - sqrt7)/(sqrt11 + sqrt7)` by `sqrt11 - sqrt7` to get
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) xx (sqrt11 - sqrt7)/(sqrt11 - sqrt7) = ((sqrt11)^2 + (sqrt7)^2 - 2 xx sqrt11 xx sqrt7)/(sqrt(11)^2 - sqrt(7)^2)`
`= (11 + 7 - 2 sqrt77)/(11 - 7)`
`= (18 - 2sqrt77)/4`
`= 9/2 - 1/2 sqrt77`
On equating rational and irrational terms, we get
`a - bsqrt77 = 9/2 - 1/2 sqrt77`
Hence we get a = 9/2, b = 1/2
APPEARS IN
RELATED QUESTIONS
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
Write the rationalisation factor of \[\sqrt{5} - 2\].
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.