Advertisements
Advertisements
Question
In the following determine rational numbers a and b:
`(5 + 3sqrt3)/(7 + 4sqrt3) = a + bsqrt3`
Solution
We know that rationalization factor for `7 + 4sqrt3` is `7 - 4sqrt3`. We will multiply numerator and denominator of the given expression `(5 + 3sqrt3)/(7 + 4sqrt3)` by `7 - 4sqrt3` to get
`(5 + 3sqrt3)/(7 + 4sqrt3) xx (7 - 4sqrt3)/(7 - 4sqrt3) = (5 xx 7 - 5 xx 4 xx sqrt3 + 3 xx 7 xx sqrt3 - 3 xx 4 xx (sqrt3)^2)/((7)^2 - (4sqrt3)^2)`
`= (35 - 20sqrt3 + 21sqrt3 - 36)/(49 - 49)`
`= (sqrt3 - 1)/1`
`= sqrt3 - 1`
On equating rational and irrational terms, we get
`a + bsqrt3 = sqrt3 - 1`
`= -1 + 1sqrt3`
Hence we get a = -1, b = 1
APPEARS IN
RELATED QUESTIONS
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = `c/d`. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`