Advertisements
Advertisements
प्रश्न
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
उत्तर
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225) = (81)^(1/4) - 8 xx (216)^(1/3) + 15 xx (32)^(1/5) + sqrt((15)^2` ...`[∵ root(m)(a) = a^(1/m)]`
= `(3^4)^(1/4) - 8 xx (6^3)^(1/3) + 15 xx (2^5)^(1/5) + 15`
= `3^(4 xx 1/4) - 8 xx 6^(3 xx 1/3) + 15 xx 2^(5 xx 1/5) + 15` ...[∵ (am)n = amn]
= 31 – 8 × 61 + 15 × 21 + 15
= 3 – 48 + 30 + 15
= 48 – 48
= 0
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Simplify the following expressions:
`(sqrt3 + sqrt7)^2`
Simplify the following expressions:
`(sqrt5 - sqrt3)^2`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
`root(4)root(3)(2^2)` equals to ______.
Value of `root(4)((81)^-2)` is ______.
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.