Advertisements
Advertisements
प्रश्न
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
उत्तर
We know that rationalization factor for `6 + 4sqrt2` is `6 - 4sqrt2`. We will multiply numerator and denominator of the given expression `(6 - 4sqrt2)/(6 + 4sqrt2)` by `6 - 4sqrt2` to get
`(6 - 4sqrt2)/(6 + 4sqrt2) xx (6 - 4sqrt2)/(6 - 4sqrt2) = (6^2 + (4sqrt2)^2 - 2 xx 6 4 sqrt2)/((6)^2 - (4sqrt2)^2)`
` (36 + 16 xx 2 - 48sqrt2)/(36 - 16 xx 2)`
`= (36 + 32 - 48sqrt2)/(36 - 32)`
`= (68 - 48sqrt2)/4`
`= 17 - 12sqrt2`
Hence the given expression is simplified with rational denominator to `17 - 12sqrt2`
APPEARS IN
संबंधित प्रश्न
Simplify of the following:
`root(3)4 xx root(3)16`
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`