Advertisements
Advertisements
Question
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Options
`sqrt(2)`
2
4
8
Solution
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to 2.
Explanation:
`(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12)) = (sqrt(16 xx 2) + sqrt(16 xx 3))/(sqrt(4 xx 2) + sqrt(4 xx 3))`
= `(4sqrt(2) + 4sqrt(3))/(2sqrt(2) + 2sqrt(3))`
= `(4(sqrt(2) + sqrt(3)))/(2(sqrt(2) + sqrt(3))`
= 2
APPEARS IN
RELATED QUESTIONS
In the following determine rational numbers a and b:
`(5 + 3sqrt3)/(7 + 4sqrt3) = a + bsqrt3`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
Value of `root(4)((81)^-2)` is ______.
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`