Advertisements
Advertisements
Question
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
Solution
Given that. `x= sqrt2-1 ` Hence `1/x`is given as
`1/x = 1/(sqrt2-1)`
We know that rationalization factor for `sqrt2-1`is `sqrt2+1` . We will multiply each side of the given expression `1/(sqrt2-1)`by, `sqrt2+1` to get
`1/(sqrt2-1) xx (sqrt2+1)/(sqrt2+1) = (sqrt2+1)/((sqrt2)^2 - (1)^2)`
` = (sqrt2 +1)/(2-1)`
`= sqrt2 +1`
Hence the value of the given expression is`sqrt2 +1`.
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
`root(4)root(3)(2^2)` equals to ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`