Advertisements
Advertisements
Question
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Solution
We can simplify the expression `(sqrt5 - 2)(sqrt3 - sqrt5)` as
`(sqrt5 - 2)(sqrt3 - sqrt5) = sqrt5 xx sqrt3 - sqrt5 xx sqrt5 - 2 xx sqrt3 + 2 xx sqrt5`
`= sqrt15 - sqrt(5 xx 5) - 2sqrt3 + 2sqrt5`
`=sqrt15 - (5^2)^(1/2) - 2sqrt3 +2sqrt5`
`= sqrt15 - (5^2)^(1/2) - 2sqrt3 + 2sqrt5`
`= sqrt15 - 5^1 - 2sqrt3 + 2sqrt5`
Hence the value of the expression is `sqrt15 - 2sqrt3 + 2sqrt5 - 5`
APPEARS IN
RELATED QUESTIONS
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Value of (256)0.16 × (256)0.09 is ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`