Advertisements
Advertisements
प्रश्न
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
उत्तर
We know that rationalization factor for `sqrt6 - sqrt5` is `sqrt6 + sqrt5`. We will multiply numerator and denominator of the given expression `1/(sqrt6 -sqrt5)` by `sqrt6 + sqrt5` to get
`1/(sqrt6 - sqrt5) xx (sqrt6 + sqrt5)/(sqrt6 + sqrt5) = (sqrt6 + sqrt6)/((sqrt6)^2 - (sqrt5)^2`
`= (sqrt6 + sqrt5)/(6 - 5)`
`= (sqrt6 + sqrt5)/(6 - 5)`
`= (sqrt6 + sqrt5)/1`
`= sqrt6 + sqrt5`
Hence the given expression is simplified with rational denominator to `sqrt6 + sqrt5`.
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.