Advertisements
Advertisements
Question
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Solution
We know that rationalization factor for `3sqrt2 + 2sqrt3` and `sqrt3 - sqrt2` are `3sqrt2 - 2sqrt3` and `sqrt3 + sqrt2`respectively. We will multiply numerator and denominator of the given expression `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3)` and `sqrt12/(sqrt3 - sqrt2)` by `3sqrt2 - 2sqrt3` and `sqrt3 + sqrt2` respectively to get
`(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) xx (3sqrt2 - 2sqrt3)/(3sqrt2 - 2sqrt3) + sqrt12/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2) = ((3sqrt2)^2 + (2sqrt3)^2 - 2 xx 3sqrt2 xx 2sqrt3)/((3sqrt2)^2 - (2sqrt3)^2) + (sqrt36 + sqrt24)/((sqrt3)^2 - (sqrt2)^2)`
`= (18 + 12 - 12sqrt6)/(18 - 12) + (6 + sqrt24)/(3 - 2)`
`= (30 - 12sqrt6 + 36 + 12sqrt6)/6`
`= 66/6`
= 11
Hence the given expression is simplified to 11
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
In the following determine rational numbers a and b:
`(5 + 3sqrt3)/(7 + 4sqrt3) = a + bsqrt3`
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.
Simplify:
`(256)^(-(4^((-3)/2))`