Advertisements
Advertisements
Question
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Solution
We know that `(a + b)(a - b) = a^2 - b^2`We will use this property to simplify the expression
`(5 + sqrt7)(5 - sqrt7)`
`:. (5 + sqrt7)(5 - sqrt7) = 5^2 - (sqrt7)^2`
`= 5 xx 5 - sqrt7 xx sqrt7`
`25 - sqrt(7 xx 7)`
`= 25 - (7^2)^(1/2)`
`= 25 - 7^1`
= 18
Hence the value of expression is 18.
APPEARS IN
RELATED QUESTIONS
Simplify of the following:
`root(3)4 xx root(3)16`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt10 + sqrt15)/sqrt2`
`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Write the reciprocal of \[5 + \sqrt{2}\].
Classify the following number as rational or irrational:
`(2sqrt7)/(7sqrt7)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`