मराठी

Find the value (s) of k for which each of the following quadratic equation has equal roots : (k – 4) x2 + 2(k – 4) x + 4 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value (s) of k for which each of the following quadratic equation has equal roots : (k – 4) x2 + 2(k – 4) x + 4 = 0

बेरीज

उत्तर

(k – 4) x2 + 2(k – 4) x + 4 = 0
Here a = k - 4, b = 2(k - 4), c = 4
D = b2 - 4ac
= [2(k - 4)]2 - 4 x (k - 4) x 4
= 4(k2 + 16 - 8k) - 16(k - 4)
= 4(k2 - 8k + 16) - 16(k - 4)
= 4[k2 - 8k + 16 - 4k + 16]
= 4(k2 - 12k + 32)
∵ Roots are equal
∴ D = 0
⇒ 4(k2 - 12k + 32) = 0
⇒ k2 - 12k + 32 = 0
⇒ k2 - 8k - 4k + 32 = 0
⇒ k(k - 8) -4(k - 8) = 0
⇒ (k - 8)(k - 4) = 0
Either k - 8 = 0,
then k = 4
or
k - 4 = 0,
then k = 4
But k - 4 ≠ 0
k ≠ 4
k = 8.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Quadratic Equations in One Variable - Exercise 5.4

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
पाठ 5 Quadratic Equations in One Variable
Exercise 5.4 | Q 5.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×