Advertisements
Advertisements
प्रश्न
Find the value(s) of m for which each of the following quadratic equation has real and equal roots: (3m + 1)x2 + 2(m + 1)x + m = 0
उत्तर
(3m + 1)x2 + 2(m + 1)x + m = 0
Here a = 3m + 1, b = 2(m + 1), c = m
D = b2 - 4ac
= [2(m + 1)]2 - 4 x (3m + 1)(m)
= 4(m2 + 2m + 1) - 12m2 - 4m
= 4m2 + 8m + 4 - 12m2 - 4m
= -8m2 + 4m + 4
∴ Roots are equal.
∴ D = 0
⇒ -8m2 + 4m + 4 = 0
⇒ 2m2 - m - 1 = 0 ...(Dividing by 4)
⇒ 2m2 - 2m + m - 1 = 0
⇒ 2m(m - 1) + 1(m - 1) = 0
⇒ (m - 1)(2m + 1) = 0
Either m - 1 = 0,
then m = 1
or
2m + 1 = 0,
then 2m = -1
⇒ m = `-(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
9x2 - 24x + k = 0
Solve the following quadratic equation using formula method only
`"x"^2 - 4 sqrt 15 "x" - 4 = 0`
Find the discriminant of the following equations and hence find the nature of roots: 3x2 – 5x – 2 = 0
Find the discriminant of the following equations and hence find the nature of roots: 16x2 - 40x + 25 = 0
Discuss the nature of the roots of the following quadratic equations : `3x^2 - 2x + (1)/(3)` = 0
Find the value (s) of k for which each of the following quadratic equation has equal roots : (k – 4) x2 + 2(k – 4) x + 4 = 0
Which of the following equations has 2 as a root?
Find the values of k so that the quadratic equation (4 – k) x2 + 2 (k + 2) x + (8k + 1) = 0 has equal roots.
Find whether the following equation have real roots. If real roots exist, find them.
5x2 – 2x – 10 = 0
Find the value of ‘c’ for which the quadratic equation
(c + 1) x2 - 6(c + 1) x + 3(c + 9) = 0; c ≠ - 1
has real and equal roots.