मराठी

Find the values of k for which each of the following quadratic equation has equal roots: x2 – 2kx + 7k – 12 = 0 Also, find the roots for those values of k in each case. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of k for which each of the following quadratic equation has equal roots: x2 – 2kx + 7k – 12 = 0 Also, find the roots for those values of k in each case.

बेरीज

उत्तर

x2 – 2kx + 7k – 12 = 0
Here a = 1, b = -2k., c = 7k - 12
∴ D = b2 - 4ac
= (-2k)2 - 4 x 1 x (7k - 12)
= 4k2 - 4(7k - 12)
= 4k2 - 28k + 48
∵ Roots are equal
∴ D = 0
⇒ 4k2 - 28k + 48 = 0
⇒ k2 - 7k + 12 = 0
⇒ k2 - 3k - 4k + 12 = 0
⇒ k(k - 3) -4(k - 3) = 0
⇒ (k - 3)(k - 4) = 0
Either k - 3 = 0,
then k = 3
or
k - 4 = 0,
then k = 4
(a) If k = 3, then

x = `(-b ± sqrt("D"))/(2a)`

= `(4k ± sqrt(10))/(2 xx 1)`

= `(4 xx 3)/(2)`

= `(12)/(2)`
= 6
x = 6, 6
(b) If k = 4, then

x = `(-b ± sqrt("D"))/(2a)`

= `(-(-2 xx 4) ± sqrt(0))/(2 xx 1)`

= `(±8)/(2)`
= 4
∴ x = 4, 4.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Quadratic Equations in One Variable - Exercise 5.4

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
पाठ 5 Quadratic Equations in One Variable
Exercise 5.4 | Q 7.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×