Advertisements
Advertisements
प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
kx2 + 4x + 1 = 0
उत्तर
The given quadric equation is kx2 + 4x + 1 = 0, and roots are real and equal
Then find the value of k.
Here, a = k, b= 4 and c = 1
As we know that D = b2 - 4ac
Putting the value of a = k, b= 4 and c = 1
D = (4)2 - 4(k)(1)
= 16 - 4k
The given equation will have real and equal roots, if D = 0
Thus,
16 - 4k = 0
4k = 16
k = 16/4
k = 4
Therefore, the value of k = 4.
APPEARS IN
संबंधित प्रश्न
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
`3x^2 - 4sqrt3x + 4 = 0`
In the following determine the set of values of k for which the given quadratic equation has real roots:
2x2 - 5x - k = 0
Show that the equation 2(a2 + b2)x2 + 2(a + b)x + 1 = 0 has no real roots, when a ≠ b.
If the equation \[\left( 1 + m^2 \right) x^2 + 2 mcx + \left( c^2 - a^2 \right) = 0\] has equal roots, prove that c2 = a2(1 + m2).
What is the nature of roots of the quadratic equation 4x2 − 12x − 9 = 0?
In each of the following, determine whether the given numbers are roots of the given equations or not; x2 – x + 1 = 0; 1, – 1
Find the discriminant of the following equations and hence find the nature of roots: 3x2 – 5x – 2 = 0
The roots of quadratic equation 5x2 – 4x + 5 = 0 are:
Find the roots of the quadratic equation by using the quadratic formula in the following:
`1/2x^2 - sqrt(11)x + 1 = 0`
The number of integral values of m for which the equation (1 + m2)x2 – 2(1 + 3m)x + (1 + 8m) = 0 has no real root is ______.