मराठी

Find the Values of N and X in Each of the Following Cases :(I) `Sum _(I = 1)^N`(Xi - 12) = - 10 `Sum _(I = 1)^N`(Xi - 3) = 62 (Ii) `Sum _(I = 1)^N` (Xi - 10) = 30 `Sum _(I = 6)^N` (Xi - 6) = 150 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of n and X in each of the following cases :

(i)  `sum _(i = 1)^n`(xi - 12) = - 10 `sum _(i = 1)^n`(xi - 3) = 62

(ii) `sum _(i = 1)^n` (xi - 10) = 30  `sum _(i = 6)^n` (xi - 6) = 150 .

उत्तर

(i)  Given `sum _(i = 1)^n`(xn - 12) = - 10 

⇒` (x_1 - 12 ) + ( x _2 - 12 ) = ....... + (x_n - 12)  = - 10`

⇒ `(x_1 + X_2 + x_3+X_4 + x _5 + ...... + x_n) - ( 12 + 12 + 12 .........+12) = - 10`

⇒ `sumx - 12 _n = -10 ......... (1)`

And `sum _(i = 1 )^n(x_i - 3) = 62 `  `⇒  ( x_1 - 3) + ( x_2 - x_3 ) + ( x_3 - 3) + ....... + ( x_n - 3)` = 62.

⇒ ` ( x_1 + x_2 + .......... + x_n ) - (3 + 3 + 3 + 3 + ...... + 37)`= 62

⇒ `sum x - 3_n = 62`........ (2)

By subtracting equation (1) from equation (2)We get

` sumx - 3_n - sumx + 12_n = 62 + 10`

⇒ `9_n` = 72

⇒ `n = 72 / 9 = 8` 

Put value of n in equation (1)

`sumx - 12 xx 8 =-10`

⇒ `sumx - 96 = - 10`

⇒ `sumx =-10 + 96 = 86`

x = `(sumx)/x  = 86/8 = 10 . 75`

(ii) Given `sum_(i - 1)^n (x_2 - 10) = 30`

⇒ ` ( x _1 -10) + ( x_2 -10) + ....... + ( x_n -10)` = 30

⇒ `(x _ 1 + x _ 2 + x _3 + ....... + x _ n) - ( 10 + 10 + 10 + ..... + 10 + ) = 30`

⇒ ` sumx -10_ n = 30       ........ (1)`

And `sum_ (i = 1)^n (x_i - 6) 150.`

⇒ `(x_1 - 6) + (x_2 - 6) + .... + (x_n - 6) = 150`

⇒ `( x_1 + x_2 + x_3 + .......... + x_n ) - (6 + 6 + 6 + ...... + 6) = 150`

⇒ `sumx - 6n = 150`      ....(2)

By subtracting equation (1) from equation (2)

`sum x - 6_n - sumx + 10_n = 150 - 30` 

⇒ `sumx - sumx + 4n = 120`

⇒ `n = 120/4`

⇒ n = 30

Put value of n in equation (1)

`sumx - 10 xx 30 = 30`

⇒`sumx -300 = 30`

⇒ `sumx = 30+300 = 330`

         ∴ =`(sumx)/ n = 330 /30 = 11`.

 

 

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Measures of Central Tendency - Exercise 24.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 24 Measures of Central Tendency
Exercise 24.1 | Q 21 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the mean salary of 60 workers of a factory from the following table:-

Salary (in Rs) Number of workers
3000 16
4000 12
5000 10
6000 8
7000 6
8000 4
9000 3
10000 1
Total 60

Find the mean of all factors of 10.


Durations of sunshine (in hours) in Amritsar for first 10 days of August 1997 as reported by
the Meteorological Department are given below: 9.6, 5.2, 3.5, 1.5, 1.6, 2.4, 2.6, 8.4, 10.3, 10.9

(i) Find the mean 𝑋 ̅
(ii) Verify that = `sum _ ( i = 1)^10`(xi - x ) = 0 


Find the mean of the following data:

x : 19 21 23 25 27 29 31
f : 13 15 16 18 16 15 13

 


Find the value of p for the following distribution whose mean is 16.6

x: 8 12 15 p 20 25 30
f : 12 16 20 24 16 8 4

Find the median of the following data (1-8)

25, 34, 31, 23, 22, 26, 35, 29, 20, 32


The demand of different shirt sizes, as obtained by a survey, is given below:

Size: 38 39 40 41 42 43 44 Total
No of persons(wearing it) 26 39 20 15 13 7 5 125

Find the modal shirt sizes, as observed from the survey.


If `barx_1, barx_2, barx_3, ..., barx_n` are the means of n groups with n1, n2, ..., nn number of observations respectively, then the mean `barx` of all the groups taken together is given by ______.


The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is ______.


A total of 25 patients admitted to a hospital are tested for levels of blood sugar, (mg/dl) and the results obtained were as follows:

87 71 83 67 85
77 69 76 65 85
85 54 70 68 80
73 78 68 85 73
81 78 81 77 75

Find mean, median and mode (mg/dl) of the above data.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×