Advertisements
Advertisements
प्रश्न
Find the mean salary of 60 workers of a factory from the following table:-
Salary (in Rs) | Number of workers |
3000 | 16 |
4000 | 12 |
5000 | 10 |
6000 | 8 |
7000 | 6 |
8000 | 4 |
9000 | 3 |
10000 | 1 |
Total | 60 |
उत्तर
We know that
`"Mean "=(sumf_ix_i)/(sumf_i)`
`"The value of "sumf_ix_i" and "sumf_i" can be calculated as follows."`
Salary (in Rs) (xi) | Number of workers (fi) | fixi |
3000 | 16 | 3000 × 16 = 48000 |
4000 | 12 | 4000 × 12 = 48000 |
5000 | 10 | 5000 × 10 = 50000 |
6000 | 8 | 6000 × 8 = 48000 |
7000 | 6 | 7000 × 6 = 42000 |
8000 | 4 | 8000 × 4 = 32000 |
9000 | 3 | 9000 × 3 = 27000 |
10000 | 1 | 10000 × 1 = 10000 |
Total | sumf_i=60 | sumf_ix_i=305000 |
`"Mean salary "=305000/60=5083.33`
Therefore, mean salary of 60 workers is Rs 5083.33.
APPEARS IN
संबंधित प्रश्न
Give one example of a situation in which
(i) the mean is an appropriate measure of central tendency.
(ii) the mean is not an appropriate measure of central tendency but the median is an appropriate measure of central tendency.
If M is the mean of x1 , x2 , x3 , x4 , x5 and x6, prove that
(x1 − M) + (x2 − M) + (x3 − M) + (x4 − M) + (x5 — M) + (x6 − M) = 0.
Explain, by taking a suitable example, how the arithmetic mean alters by
(i) adding a constant k to each term
(ii) subtracting a constant k from each them
(iii) multiplying each term by a constant k and
(iv) dividing each term by a non-zero constant k.
Find the missing frequency (p) for the following distribution whose mean is 7.68.
x | 3 | 5 | 7 | 9 | 11 | 13 |
f | 6 | 8 | 15 | p | 8 | 4 |
Find the median of the following data (1-8)
83, 37, 70, 29, 45, 63, 41, 70, 34, 54
Find the mode of the following data :
14, 25, 14, 28, 18, 17, 18, 14, 23, 22, 14, 18
If the mean of 2, 4, 6, 8, x, y is 5, then find the value of x + y.
The mean salary of 20 workers is Rs.10,250. If the salary of office superintendent is added, the mean will increase by Rs.750. Find the salary of the office superintendent.
Let `barx` be the mean of x1, x2, ..., xn and `bary` the mean of y1, y2, ..., yn. If `barz` is the mean of x1, x2, ..., xn, y1, y2, ..., yn, then `barz` is equal to ______.
Obtain the mean of the following distribution:
Frequency | Variable |
4 | 4 |
8 | 6 |
14 | 8 |
11 | 10 |
3 | 12 |