Advertisements
Advertisements
Question
Find the mean salary of 60 workers of a factory from the following table:-
Salary (in Rs) | Number of workers |
3000 | 16 |
4000 | 12 |
5000 | 10 |
6000 | 8 |
7000 | 6 |
8000 | 4 |
9000 | 3 |
10000 | 1 |
Total | 60 |
Solution
We know that
`"Mean "=(sumf_ix_i)/(sumf_i)`
`"The value of "sumf_ix_i" and "sumf_i" can be calculated as follows."`
Salary (in Rs) (xi) | Number of workers (fi) | fixi |
3000 | 16 | 3000 × 16 = 48000 |
4000 | 12 | 4000 × 12 = 48000 |
5000 | 10 | 5000 × 10 = 50000 |
6000 | 8 | 6000 × 8 = 48000 |
7000 | 6 | 7000 × 6 = 42000 |
8000 | 4 | 8000 × 4 = 32000 |
9000 | 3 | 9000 × 3 = 27000 |
10000 | 1 | 10000 × 1 = 10000 |
Total | sumf_i=60 | sumf_ix_i=305000 |
`"Mean salary "=305000/60=5083.33`
Therefore, mean salary of 60 workers is Rs 5083.33.
APPEARS IN
RELATED QUESTIONS
If M is the mean of x1 , x2 , x3 , x4 , x5 and x6, prove that
(x1 − M) + (x2 − M) + (x3 − M) + (x4 − M) + (x5 — M) + (x6 − M) = 0.
The mean of five numbers is 27. If one number is excluded, their mean is 25. Find the
excluded number.
Find the values of n and X in each of the following cases :
(i) `sum _(i = 1)^n`(xi - 12) = - 10 `sum _(i = 1)^n`(xi - 3) = 62
(ii) `sum _(i = 1)^n` (xi - 10) = 30 `sum _(i = 6)^n` (xi - 6) = 150 .
Find the value of p for the following distribution whose mean is 16.6
x: | 8 | 12 | 15 | p | 20 | 25 | 30 |
f : | 12 | 16 | 20 | 24 | 16 | 8 | 4 |
Find the median of the following data (1-8)
92, 35, 67, 85, 72, 81, 56, 51, 42, 69
The algebraic sum of the deviations of a set of n values from their mean is
If `barx_1, barx_2, barx_3, ..., barx_n` are the means of n groups with n1, n2, ..., nn number of observations respectively, then the mean `barx` of all the groups taken together is given by ______.
There are 50 numbers. Each number is subtracted from 53 and the mean of the numbers so obtained is found to be –3.5. The mean of the given numbers is ______.
The mean marks (out of 100) of boys and girls in an examination are 70 and 73, respectively. If the mean marks of all the students in that examination is 71, find the ratio of the number of boys to the number of girls.
A total of 25 patients admitted to a hospital are tested for levels of blood sugar, (mg/dl) and the results obtained were as follows:
87 | 71 | 83 | 67 | 85 |
77 | 69 | 76 | 65 | 85 |
85 | 54 | 70 | 68 | 80 |
73 | 78 | 68 | 85 | 73 |
81 | 78 | 81 | 77 | 75 |
Find mean, median and mode (mg/dl) of the above data.