Advertisements
Advertisements
Question
If `barx_1, barx_2, barx_3, ..., barx_n` are the means of n groups with n1, n2, ..., nn number of observations respectively, then the mean `barx` of all the groups taken together is given by ______.
Options
`sum_(i = 1)^n n_i barx_i`
`(sum_(i = 1)^n n_i barx_i)/n^2`
`(sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
`(sum_(i = 1)^n n_i barx_i)/(2n)`
Solution
If `barx_1, barx_2, barx_3, ..., barx_n` are the means of n groups with n1, n2, ..., nn number of observations respectively, then the mean `barx` of all the groups taken together is given by `underlinebb((sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i))`.
Explanation:
Given, `barx_1, barx_2, barx_3, ..., barx_n` are the means of n groups having number of observations n1, n2, ..., nn, respectively.
Then, `n_1 barx_1 = sum_(i = 1)^(n_1) x_i, n_2 barx_2`
= `sum_(j = 1)^(n_2 ) x_j, n_3 barx_3`
= `sum_(k = 1)^(n_3) x_k, ..., n_n barx_n`
= `sum_(p = 1)^(n_n) x_p`
Now, the mean `barx` of all the groups taken together is given by
`barx = (sum_(i = 1)^(n_1) x_i + sum_(j = 1)^(n_2) x_j + sum_(k = 1)^(n_3) x_k + .... + sum_(p = 1)^(n_n) x_p)/(n_1 + n_2 + ... + n_n)`
= `(n_1 barx_1 + n_2 barx_2 + n_3 barx_3 + ... + n_n barx_n)/(n_1 + n_2 + ... + n_n)`
= `(sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
Hence, the mean of all the groups taken together is given by `barx = (sum_(i = 1)^n n_i barx_i)/(sum_(i = 1)^n n_i)`
APPEARS IN
RELATED QUESTIONS
Find the mean of x, x + 2, x + 4, x +6, x + 8.
Following are the weights (in kg) of 10 new born babies in a hospital on a particular day:
3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6. Find the mean x.
The percentage of marks obtained by students of a class in mathematics are : 64, 36, 47, 23,
0, 19, 81, 93, 72, 35, 3, 1. Find their mean.
Find the median of the following data (1-8)
41, 43, 127, 99, 71, 92, 71, 58, 57
If the difference of mode and median of a data is 24, then find the difference of median and mean.
The algebraic sum of the deviations of a set of n values from their mean is
If the mean of the observations: x, x + 3, x + 5, x + 7, x + 10 is 9, the mean of the last three observations is ______.
If the mean of the following data is 20.2, find the value of p:
x | 10 | 15 | 20 | 25 | 30 |
f | 6 | 8 | p | 10 | 6 |
Obtain the mean of the following distribution:
Frequency | Variable |
4 | 4 |
8 | 6 |
14 | 8 |
11 | 10 |
3 | 12 |
Ten observations 6, 14, 15, 17, x + 1, 2x – 13, 30, 32, 34, 43 are written in an ascending order. The median of the data is 24. Find the value of x.