English

If x¯ is the mean of x1, x2, ..., xn, then for a ≠ 0, the mean of ax1,ax2,...,axn,x1a,x2a,...,xna is ______. - Mathematics

Advertisements
Advertisements

Question

If `barx` is the mean of x1, x2, ..., xn, then for a ≠ 0, the mean of `ax_1, ax_2, ..., ax_n, x_1/a, x_2/a, ..., x_n/a` is ______.

Options

  • `(a + 1/a)barx`

  • `(a + 1/a) barx/2`

  • `(a + 1/a)barx/n`

  • `((a + 1/a)barx)/(2n)`

MCQ
Fill in the Blanks

Solution

If `barx` is the mean of x1, x2, ..., xn, then for a ≠ 0, the mean of `ax_1, ax_2, ..., ax_n, x_1/a, x_2/a, ..., x_n/a` is `underlinebb((a + 1/a) barx/2)`.

Explanation:

Given: `barx` is the mean of x1, x2, ..., xn.

Then, `barx = (x_1 + x_2 + ... + x_n)/n`

Let the mean of the data set `ax_1, ax_2, .... ax_n, x_1/a, x_2/a , ... , x_n/a` is `bary`.

So, `bary = (ax_1 + ax_2 + ... + ax_n + x_1/a + x_2/a + ... + x_n/a)/(2n)`

`bary = (a(x_1 + x_2 + ... + x_n) + 1/a (x_1 + x_2 + ... + x_n))/(2n)`

`bary = ((a + 1/a)(x_1 + x_2 + .... +  x_n))/(2n)`

From equation (I):

`bary = ((a + 1/a)barx)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Statistics & Probability - Exercise 14.1 [Page 133]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 14 Statistics & Probability
Exercise 14.1 | Q 16. | Page 133

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×