рдорд░рд╛рдареА

Find the Volume of the Paraboloid X 2 + Y 2 = 4 Z Cut off by the Plane ЁЭТЫ=ЁЭЯТ - Applied Mathematics 2

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Find the volume of the paraboloid `x^2+y^2=4z` cut off by the plane ЁЭТЫ=ЁЭЯТ

рдмреЗрд░реАрдЬ

рдЙрддреНрддрд░

Paraboloid : `x^2+y^2=4z` Plane : ЁЭТЫ=ЁЭЯТ

Cartesian coordinate → cylindrical coordinates

(ЁЭТЩ,ЁЭТЪ,ЁЭТЫ) → (ЁЭТУ,ЁЭЬ╜,ЁЭТЫ)

Put ЁЭТЩ=ЁЭТУЁЭТДЁЭТРЁЭТФ ЁЭЬ╜ ,ЁЭТЪ=ЁЭТУЁЭТФЁЭТКЁЭТП ЁЭЬ╜ ,ЁЭТЫ=ЁЭТЫ  `therefore x^2+y^2=r^2`

∴ Paraboloid : r2 =4x and Plane : z = 4

If we are passing one arrow parallel to z axis from –ve to +ve we will get limits of z

`therefore r^2/4`≤ ЁЭТЫ ≤ ЁЭЯТ
ЁЭЯО ≤ ЁЭТУ ≤ 4

0 ≤ ЁЭЬ╜ ≤ `pi/2`

Volume of given paraboloid cut off by the plane is given by ,

`V = 4int_0^(pi/2) int_0^4 int_(r^2/4)^4rdrd theta dz`

` = 4int_0^(pi/2) int_0^4 [4r-r^4/16]_(r^2/4)^4drd theta`

` = 4int_0^(pi/2) int_0^4 [4r-r^3/4]drd theta`

`=4int_0^(pi/2)[2r^2-r^4/16]_0^4d theta`

`=4int_0^(pi/2)[32-16]d theta`
ЁЭС╜ =ЁЭЯСЁЭЯР ЁЭЭЕ cubic units

shaalaa.com
Triple Integration Definition and Evaluation
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
2017-2018 (June) CBCGS
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×