Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Find the volume of the paraboloid `x^2+y^2=4z` cut off by the plane ЁЭТЫ=ЁЭЯТ
рдЙрддреНрддрд░
Paraboloid : `x^2+y^2=4z` Plane : ЁЭТЫ=ЁЭЯТ
Cartesian coordinate → cylindrical coordinates
(ЁЭТЩ,ЁЭТЪ,ЁЭТЫ) → (ЁЭТУ,ЁЭЬ╜,ЁЭТЫ)
Put ЁЭТЩ=ЁЭТУЁЭТДЁЭТРЁЭТФ ЁЭЬ╜ ,ЁЭТЪ=ЁЭТУЁЭТФЁЭТКЁЭТП ЁЭЬ╜ ,ЁЭТЫ=ЁЭТЫ `therefore x^2+y^2=r^2`
∴ Paraboloid : r2 =4x and Plane : z = 4
If we are passing one arrow parallel to z axis from –ve to +ve we will get limits of z
`therefore r^2/4`≤ ЁЭТЫ ≤ ЁЭЯТ
ЁЭЯО ≤ ЁЭТУ ≤ 4
0 ≤ ЁЭЬ╜ ≤ `pi/2`
Volume of given paraboloid cut off by the plane is given by ,
`V = 4int_0^(pi/2) int_0^4 int_(r^2/4)^4rdrd theta dz`
` = 4int_0^(pi/2) int_0^4 [4r-r^4/16]_(r^2/4)^4drd theta`
` = 4int_0^(pi/2) int_0^4 [4r-r^3/4]drd theta`
`=4int_0^(pi/2)[2r^2-r^4/16]_0^4d theta`
`=4int_0^(pi/2)[32-16]d theta`
ЁЭС╜ =ЁЭЯСЁЭЯР ЁЭЭЕ cubic units