English

Find the Volume of the Paraboloid X 2 + Y 2 = 4 Z Cut off by the Plane ๐’›=๐Ÿ’ - Applied Mathematics 2

Advertisements
Advertisements

Question

Find the volume of the paraboloid `x^2+y^2=4z` cut off by the plane ๐’›=๐Ÿ’

Sum

Solution

Paraboloid : `x^2+y^2=4z` Plane : ๐’›=๐Ÿ’

Cartesian coordinate → cylindrical coordinates

(๐’™,๐’š,๐’›) → (๐’“,๐œฝ,๐’›)

Put ๐’™=๐’“๐’„๐’๐’” ๐œฝ ,๐’š=๐’“๐’”๐’Š๐’ ๐œฝ ,๐’›=๐’›  `therefore x^2+y^2=r^2`

∴ Paraboloid : r2 =4x and Plane : z = 4

If we are passing one arrow parallel to z axis from –ve to +ve we will get limits of z

`therefore r^2/4`≤ ๐’› ≤ ๐Ÿ’
๐ŸŽ ≤ ๐’“ ≤ 4

0 ≤ ๐œฝ ≤ `pi/2`

Volume of given paraboloid cut off by the plane is given by ,

`V = 4int_0^(pi/2) int_0^4 int_(r^2/4)^4rdrd theta dz`

` = 4int_0^(pi/2) int_0^4 [4r-r^4/16]_(r^2/4)^4drd theta`

` = 4int_0^(pi/2) int_0^4 [4r-r^3/4]drd theta`

`=4int_0^(pi/2)[2r^2-r^4/16]_0^4d theta`

`=4int_0^(pi/2)[32-16]d theta`
๐‘ฝ =๐Ÿ‘๐Ÿ ๐… cubic units

shaalaa.com
Triple Integration Definition and Evaluation
  Is there an error in this question or solution?
2017-2018 (June) CBCGS
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×