मराठी

Find What the Following Equation Become When the Origin is Shifted to the Point (1, 1). Xy − X − Y + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0

बेरीज

उत्तर

 Substituting \[x = X + 1, y = Y + 1\] in the given equation, we get:
\[\left( X + 1 \right)\left( Y + 1 \right) - \left( X + 1 \right) - \left( Y + 1 \right) + 1 = 0\]
\[ \Rightarrow XY + X + Y + 1 - X - 1 - Y - 1 + 1\]
\[ \Rightarrow XY = 0\]
Hence, the transformed equation is  xy = 0.

shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.3 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.3 | Q 3.3 | पृष्ठ २१

संबंधित प्रश्‍न

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


The vertices of a triangle ABC are A (0, 0), B (2, −1) and C (9, 2). Find cos B.


Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.


The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are (−36, 7), (20, 7) and (0, −8).


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

A point moves so that the difference of its distances from (ae, 0) and (−ae, 0) is 2a. Prove that the equation to its locus is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]


Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.

 

Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.

 

Find the locus of a point such that the line segments with end points (2, 0) and (−2, 0) subtend a right angle at that point.

 

If A (−1, 1) and B (2, 3) are two fixed points, find the locus of a point P, so that the area of ∆PAB = 8 sq. units.


Find the locus of the mid-point of the portion of the line x cos α + y sin α = p which is intercepted between the axes.

 

What does the equation (x − a)2 + (y − b)2 = r2 become when the axes are transferred to parallel axes through the point (a − c, b)?

 

Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


To what point should the origin be shifted so that the equation x2 + xy − 3x − y + 2 = 0 does not contain any first degree term and constant term?


Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3y2 − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − y2 − x + y = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms: x2 + y2 − 5x + 2y − 5 = 0


Verify that the area of the triangle with vertices (4, 6), (7, 10) and (1, −2) remains invariant under the translation of axes when the origin is shifted to the point (−2, 1).


Three vertices of a parallelogram, taken in order, are (−1, −6), (2, −5) and (7, 2). Write the coordinates of its fourth vertex.

 

If the points (a, 0), (at12, 2at1) and (at22, 2at2) are collinear, write the value of t1 t2.

 

Write the coordinates of the circumcentre of a triangle whose centroid and orthocentre are at (3, 3) and (−3, 5), respectively.

 

If the points (1, −1), (2, −1) and (4, −3) are the mid-points of the sides of a triangle, then write the coordinates of its centroid.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×