मराठी

Four Points a (6, 3), B (−3, 5), C (4, −2) and D (X, 3x) Are Given in Such a Way that δ D B C δ a B C = 1 2 . Find X. - Mathematics

Advertisements
Advertisements

प्रश्न

Four points A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are given in such a way that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\]. Find x.

बेरीज

उत्तर

We know that the area of a triangle with vertices \[\left( x_1 , y_1 \right), \left( x_2 , y_2 \right)\text{ and }\left( x_3 , y_3 \right)\] is given by:

\[\text{ Area }= \frac{1}{2}\left\{ x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right\}\]
\[\therefore\text{ Area of ∆ DBC }= \frac{1}{2}\left| - 3\left( - 2 - 3x \right) + 4\left( 3x - 5 \right) + x\left( 5 + 2 \right) \right|\]
\[\Rightarrow\text{ Area of ∆ DBC }= 7\left( 2x - 1 \right)\]
\[\therefore\text{ Area of ∆ ABC }= \frac{1}{2}\left| 6\left( 5 + 2 \right) - 3\left( - 2 - 3 \right) + 4\left( 3 - 5 \right) \right|\]
\[= \frac{49}{2}\]
It is given that \[\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}\].
\[\therefore \frac{7\left( 2x - 1 \right) \times 2}{49} = \frac{1}{2}\]
\[\therefore x = \frac{11}{8}\]
shaalaa.com
Brief Review of Cartesian System of Rectanglar Co-ordinates
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Brief review of cartesian system of rectangular co-ordinates - Exercise 22.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.1 | Q 3 | पृष्ठ १३

संबंधित प्रश्‍न

If the line segment joining the points P (x1, y1) and Q (x2, y2) subtends an angle α at the origin O, prove that
OP · OQ cos α = x1 x2 + y1, y2


Find the coordinates of the centre of the circle inscribed in a triangle whose vertices are (−36, 7), (20, 7) and (0, −8).


The base of an equilateral triangle with side 2a lies along the y-axis, such that the mid-point of the base is at the origin. Find the vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when (i) PQ is parallel to the y-axis (ii) PQ is parallel to the x-axis.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

 

Find the locus of a point equidistant from the point (2, 4) and the y-axis.

 

Find the locus of a point such that the sum of its distances from (0, 2) and (0, −2) is 6.

 

Find the locus of a point which is equidistant from (1, 3) and the x-axis.

 

Find the locus of a point which moves such that its distance from the origin is three times its distance from the x-axis.

 

Find the locus of the mid-point of the portion of the line x cos α + y sin α = p which is intercepted between the axes.

 

What does the equation (a − b) (x2 + y2) −2abx = 0 become if the origin is shifted to the point \[\left( \frac{ab}{a - b}, 0 \right)\] without rotation?


Find what the following equation become when the origin is shifted to the point (1, 1).
x2 + xy − 3x − y + 2 = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
 x2 − y2 − 2x +2y = 0


Find what the following equation become when the origin is shifted to the point (1, 1).
xy − x − y + 1 = 0


Verify that the area of the triangle with vertices (2, 3), (5, 7) and (− 3 − 1) remains invariant under the translation of axes when the origin is shifted to the point (−1, 3).


Find what the following equation become when the origin is shifted to the point (1, 1).
 xy − x − y + 1 = 0


Find the point to which the origin should be shifted after a translation of axes so that the following equation will have no first degree terms:  y2 + x2 − 4x − 8y + 3 = 0


Verify that the area of the triangle with vertices (4, 6), (7, 10) and (1, −2) remains invariant under the translation of axes when the origin is shifted to the point (−2, 1).


The vertices of a triangle are O (0, 0), A (a, 0) and B (0, b). Write the coordinates of its circumcentre.


In Q.No. 1, write the distance between the circumcentre and orthocentre of ∆OAB.

 

Write the coordinates of the orthocentre of the triangle formed by points (8, 0), (4, 6) and (0, 0).


If the points (a, 0), (at12, 2at1) and (at22, 2at2) are collinear, write the value of t1 t2.

 

Write the coordinates of the circumcentre of a triangle whose centroid and orthocentre are at (3, 3) and (−3, 5), respectively.

 

Write the coordinates of the in-centre of the triangle with vertices at (0, 0), (5, 0) and (0, 12).


If the points (1, −1), (2, −1) and (4, −3) are the mid-points of the sides of a triangle, then write the coordinates of its centroid.


Write the area of the triangle with vertices at (a, b + c), (b, c + a) and (c, a + b).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×