Advertisements
Advertisements
प्रश्न
For a G.P., if a = 2, r = `-2/3`, find S6.
उत्तर
a = 2, r = `-2/3`
Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1
∴ S6 = `(2[1 - (-2/3)^6])/(1 - (-2/3)`
= `(2[1 - (-2/3)^6])/(5/3)`
= `6/5[(729 - 64)/3^6]`
= `6/5[665/729]`
∴ S6 = `266/243`.
APPEARS IN
संबंधित प्रश्न
If for a sequence, tn = `(5^("n" - 3))/(2^("n" - 3)`, show that the sequence is a G. P. Find its first term and the common ratio.
For the following G.P.'s, find Sn: 3, 6, 12, 24, ...
For the following G.P.'s, find Sn: p, q, `"q"^2/"p", "q"^3/"p"^2`, ...
For a G.P., if t4 = 16, t9 = 512, find S10.
Find the nth terms of the sequences: 0.5, 0.55, 0.555, …
If S, P, R are the sum, product and sum of the reciprocals of n terms of a G.P. respectively, then verify that `("S"/"R")^"n" = "P"^2`.
If for a sequence `t_n = 5^(n-3) / 2^(n-3),` show that the sequence is a G.P.
Find its first term and the common ratio.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively , then verify that Sn(S3n - S2n) = (S2n - Sn)2
If for a sequence, `t_n=(5^n-3)/(2^n-3)` show that the sequence is a G.P.
Find its first term and the common ratio.
If for a sequence, `t_n = (5^(n-3)) / (2^(n-3))`, show that the sequence is a G.P. Find its first term and the common ratio.
If for a sequence, tn = `5^(n-3)/2^(n-3)`, show that the sequence is a G.P.
Find its first term and the common ratio.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If for a sequence, `t_n=5^(n-3)/2^(n-3)`, show that the sequence is a G.P.
Find its first term and the common ratio.
If Sn , S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn(S3n − S2n) = (S2n − Sn)2