Advertisements
Advertisements
प्रश्न
For a G.P., if a = 2, r = `-2/3`, find S6.
उत्तर
a = 2, r = `-2/3`
Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1
∴ S6 = `(2[1 - (-2/3)^6])/(1 - (-2/3)`
= `(2[1 - (-2/3)^6])/(5/3)`
= `6/5[(729 - 64)/3^6]`
= `6/5[665/729]`
∴ S6 = `266/243`.
APPEARS IN
संबंधित प्रश्न
If for a sequence, tn = `(5^("n" - 3))/(2^("n" - 3)`, show that the sequence is a G. P. Find its first term and the common ratio.
For the following G.P.'s, find Sn: 3, 6, 12, 24, ...
For a G.P., if S5 = 1023, r = 4, find a.
For a G.P., if a = 2, r = 3, Sn = 242, find n.
For a G.P., if the sum of the first 3 terms is 125 and the sum of the next 3 terms is 27, find the value of r.
Find the sum to n terms: 3 + 33 + 333 + 3333 + ...
Find the sum to n terms: 8 + 88 + 888 + 8888 + …
Find the sum to n terms: 0.7 + 0.77 + 0.777 + ...
Find the nth terms of the sequences: 0.2, 0.22, 0.222, …
If for a sequence `t_n = 5^(n-3) / 2^(n-3),` show that the sequence is a G.P.
Find its first term and the common ratio.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively , then verify that Sn(S3n - S2n) = (S2n - Sn)2
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If `S_n ,S_(2n) ,S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`
If Sn, S2n, S3n are the sum of n, 2n, and 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If Sn , S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn(S3n − S2n) = (S2n − Sn)2
If for a sequence, `"t"_"n" = (5^"n"-3)/(2^"n"-3)`, show that sequence is a G.P.
Find its first term and the common ratio.