Advertisements
Advertisements
प्रश्न
For the hydrogen atom, the minimum excitation energy ( of n =2) is ______
पर्याय
3.4 e V
10.2 eV
13.6 eV
– 10.2 eV
उत्तर
For the hydrogen atom, the minimum excitation energy ( of n =2) is 10.2 eV.
APPEARS IN
संबंधित प्रश्न
Answer in brief.
State the postulates of Bohr’s atomic model.
The linear momentum of the particle is 6.63 kg m/s. Calculate the de Broglie wavelength.
Calculate the longest wavelength in the Paschen series.
(Given RH =1.097 ×107 m-1)
Calculate the shortest wavelength in the Paschen series if the longest wavelength in the Balmar series is 6563 Ao.
Which of the following series of transitions in the spectrum of hydrogen atom falls in ultraviolet region?
The radius of electron's second stationary orbit in Bohr's atom is R. The radius of the third orbit will be ______
The magnifying power of a telescope is high, if its objective and eyepiece have respectively ____________.
The ratio of speed of an electron in the ground state in the Bohr's first orbit of hydrogen atom to velocity of light (c) is ____________.
(h = Planck's constant, ε0 = permittivity of free space, e = charge on electron)
Using Bohr's model, the orbital period of electron in hydrogen atom in nth orbit is (ε0 = permittivity of free space, h = Planck's constant, m = mass of electron and e = electronic charge)
How many moles of electrons are required for reduction of 9 moles of Cr3+ to Cr?
If the ionisation potential of helium atom is 24.6 volt, the energy required to ionise it will be ____________.
Taking the Bohr radius as a0= 53 pm, the radius of Li++ ion in its ground state, on the basis of Bohr's model, will be about ______.
The total energy of an electron in an atom in an orbit is -3.4 eV. Its kinetic and potential energies are, respectively ______.
In Bohr's model of hydrogen atom, the period of revolution of the electron in any orbit is proportional to ______.
When hydrogen atom is in its first excited level, its radius is how many time its ground state radius?
The time of revolution of an electron around a nucleus of charge Ze in nth Bohr orbit is directly proportional to ____________.
In hydrogen spectnun, the wavelengths of light emited in a series of spectral lines is given by the equation `1/lambda = "R"(1/3^2 - 1/"n"^2)`, where n = 4, 5, 6 .... And 'R' is Rydberg's constant.
Identify the series and wavelenth region.
Ratio of centripetal acceleration for an electron revolving in 3rd orbit to 5th orbit of hydrogen atom is ______.
An electron of mass 'm' is rotating in first Bohr orbit of radius 'r' in hydrogen atom. The orbital acceleration of the electron in first orbit (h = Planck's constant).
In any Bohr orbit of hydrogen atom, the ratio of K.E to P.E of revolving electron at a distance 'r' from the nucleus is ______.
When an electron in a hydrogen atom jumps from the third orbit to the second orbit, it emits a photon of wavelength 'λ'. When it jumps from the fourth orbit to third orbit, the wavelength emitted by the photon will be ______.
The electron of mass 'm' is rotating in first Bohr orbit of radius 'r' in hydrogen atom. The orbital acceleration of the electron in first orbit is ______.
(b =Planck's constant)
The radius of orbit of an electron in hydrogen atom in its ground state is 5.3 x 10-11 m After collision with an electron, it is found to have a radius of 13.25 x 10-10 m. The principal quantum number n of the final state of the atom is ______.
If Vn and Vp are orbital velocities in nth and pth orbit respectively, then the ratio Vp: Vn is ______.
An electron of mass m and charge e initially at rest gets accelerated by a constant electric field E. The rate of change of de-Broglie wavelength of this electron at time t ignoring relativistic effects is ______.
The orbital frequency of an electron in the hydrogen atom ______.
Let Ee and Ep represent the kinetic energy of electron and photon, respectively. If the de-Broglie wavelength λp of a photon is twice the de-Broglie wavelength λe of an electron, then `E_p/E_e` is ______.
(speed of electron = `c/100`, c = velocity of light)
In Bohr’s atomic model, speed and time period of revolution of an electron in n = 3 level are respectively.
Calculate the radius of the first Bohr orbit in the hydrogen atom.