Advertisements
Advertisements
प्रश्न
For what values of x, `4/3, x, 4/27` are in G.P.?
उत्तर
`4/3, x, 4/27` are in geometric progression.
∴ `"t"_2/"t"_1 = "t"_3/"t"_2`
∴ `x/(4/3) = (4/27)/x`
∴ x2 = `4/3 xx 4/27`
∴ x2 = `16/81`
∴ x = `± 4/9`
APPEARS IN
संबंधित प्रश्न
Verify whether the following sequence is G.P. If so, write tn:
1, – 5, 25, – 125, ...
For the G.P., if r = `1/3`, a = 9, find t7.
For the G.P., if a = `2/3`, t6 = 162, find r.
For a G.P. a = `4/3 and "t"_7 = 243/1024`, find the value of r.
For a sequence Sn = 4(7n – 1), verify whether the sequence is a G.P.
Verify whether the following sequences are G.P.If so, find tn.
`sqrt(5),1/sqrt(5),1/(5sqrt(5)),1/(25sqrt(5))`
Verify whether the following sequence is G.P. If so, find tn.
`sqrt5, 1/sqrt5, 1/(5sqrt5), 1/(25sqrt5), ................`
Verify whether the following sequences are G.P. If so, find tn.
`sqrt5, 1/sqrt5, 1/(5sqrt5), 1/(25sqrt5),...`
If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P.
Find its first term and the common ratio.
For the G.P. if a = `2/3`, t6 = 162 , find r.
For the G.P. if a = `2/3`, t6 = 162, find r.
Verify whether the following sequence is G.P. If so, find tn.
`sqrt5,1/sqrt5,1/(5sqrt5),1/(25sqrt5),...`
For the G.P. if a = `2/3 , t_6 = 162 ` , find r
Verify whether the following sequence are G.P. If so, find tn
`sqrt5, 1/sqrt5, 1/(5sqrt5), 1/(25sqrt5),.......`
Verify whether the following sequence is G.P. If to find tn:
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
If for a sequence, `t_n = (5^(n - 3))/(2^(n - 3))`, show that the sequence is a G.P.
Find its first term and the common ratio.