Advertisements
Advertisements
प्रश्न
Form the differential equation that represents all parabolas each of which has a latus rectum 4a and whose axes are parallel to the x-axis
उत्तर
Equation of parabola whose axis is parallel to the x-axis with latus rectum 4a is
(y – β)2 = 4a(x – α) ........(1)
Here (α, β) is the vertex of the parabola.
Differentiating (1) w.r.t x, we get
`2(y - beta) ("d"y)/("d"x)` = 4a .........(2)
Again, differentiating (2) w.r.t x, we get
`2[(y - beta) ("d"^2y)/("d"x^2) + (("d"y)/("d"x))^2]` = 0 ........(3)
From (2) we have,
`(y - beta) ("d"y)/("d"x)` = 2a
`y - beta = (2"a")/(("d"y)/("d"x))`
Using this in (3) we get
`(2"a")/(("d"y)/("d"x)) ("d"^2y)/("d"x^2) + (("d"y)/("d"x))^2` = 0
or
`2"a" ("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3`
= 0 is the required differential equation
APPEARS IN
संबंधित प्रश्न
Find the order and degree of the following differential equation:
`("d"y)/("d"x) + 2 = x^3`
Find the order and degree of the following differential equation:
`("d"^3y)/("d"x^3) + 3 (("d"y)/("d"x))^3 + 2 ("d"y)/("d"x)` = 0
Find the order and degree of the following differential equation:
`("d"^2y)/("d"x^2) = sqrt(y - ("d"y)/("d"x))`
Find the order and degree of the following differential equation:
`("d"^2y)/("d"x^2) + y + (("d"y)/("d"x) - ("d"^3y)/("d"x^3))^(3/2)` = 0
Find the order and degree of the following diff erential equation:
(2 – y”)2 = y”2 + 2y’
Find the differential equation of the following:
y = cx + c – c3
Find the differential equation of the following:
y = c(x – c)2
Find the differential equation of the family of all straight lines passing through the origin
Choose the correct alternative:
The differential equation formed by eliminating a and b from y = aex + be-x is
Choose the correct alternative:
The differential equation formed by eliminating A and B from y = e-2x (A cos x + B sin x) is