Given that xy + yx = ab, where a and b are positive constants, find dydx.
Given, xy + yx = ab
elogxy+elogyx=ab ...[we know that: elogm=m]
eylogx+exlogy=ab ...[log mn = n log m]
d.w.r to x
eylogx[y×1x+logxdydx]+exlogy[x×1ydydx+logy×1]=ddxab
elogxy[yx+logxdydx]+elogyx[xydydx+logy]=0
xy[yx+logxdydx]+yx[xydydx+logy]=0
yxy-1+xylogxdydx+xyx-1dydx+yxlogy=0
(xylogx+xyx-1)dydx=-(yxlogy+yxy-1)
dydx=-yxlogy+yxy-1xylogx+xyx-1