Advertisements
Advertisements
प्रश्न
Given that xy + yx = ab, where a and b are positive constants, find `dy/dx`.
योग
उत्तर
Given, xy + yx = ab
`e^(logx^y) + e^(logy^x) = a^b` ...[we know that: `e^(log m) = m]`
`e^(ylogx) + e^(x log y) = a^b` ...[log mn = n log m]
d.w.r to x
`e^(y log x) [yxx1/x + log x dy/dx]+ e^(xlogy)[x xx 1/y dy/dx + log y xx 1] = d/dx a^b`
`e log x^y [y/x + logx dy/dx] + e^(logy^x) [x/y dy/dx + logy] = 0`
`x^y[y/x + log x dy/dx] + y^x[x/y dy/dx + logy] = 0`
`yx^(y-1) + x^y log x dy/dx + xy^(x-1) dy/dx + y^xlogy = 0`
`(x^y logx+xy^(x-1))dy/dx = -(y^x logy+yx^(y-1))`
`dy/dx = (-y^x logy+yx^(y-1))/(x^y logx+xy^(x-1)`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?