Advertisements
Advertisements
प्रश्न
Given x ∈ {1, 2, 3, 4, 5, 6, 7, 9}, find the values of x for which -3 < 2x – 1 < x + 4.
उत्तर
3 < 2x – 1 < x + 4.
⇒ – 3 < 2x – 1 and 2x – 1 < x + 4
⇒ – 2x < – 1 + 3 and 2x – x < 4 + 1
⇒ – 2x < 2 and x < 5
⇒ – x < 1
⇒ x > – 1
– 1 < x < 5
x ∈ {1, 2, 3, 4, 5, 6, 7, 9}
Solution set = {1, 2, 3, 4}.
APPEARS IN
संबंधित प्रश्न
If P = { x : -3 < x ≤ 7, x ∈ R} and Q = { x : - 7 ≤ x < 3, x ∈ R} , represent the following solution set on the different number lines :
P ∩ Q
Solve : 2 (x – 2) < 3x – 2, x ∈ { – 3, – 2, – 1, 0, 1, 2, 3} .
If x is a negative integer, find the solution set of `(2)/(3) + (1)/(3)` (x + 1) > 0.
Solve: `(2x - 3)/(4) ≥ (1)/(2)`, x ∈ {0, 1, 2,…,8}
List the solution set of `(11 - 2x)/(5) ≥ (9 - 3x)/(8) + (3)/(4)`, x ∈ N
Solve : 1 ≥ 15 – 7x > 2x – 27, x ∈ N
If x ∈ W, then the solution set of the inequation 3x + 11 ≥ x + 8 is
If x ∈ I, then the solution set of the inequation 1 < 3x + 5 ≤ 11 is
If x ∈ R, the solution set of 6 ≤ – 3 (2x – 4) < 12 is ______.
Solve the inequation : `(5x + 1)/(7) - 4 (x/7 + 2/5) ≤ 1(3)/(5) + (3x - 1)/(7), x ∈ "R"`