Advertisements
Advertisements
प्रश्न
If x ∈ W, then the solution set of the inequation 3x + 11 ≥ x + 8 is
पर्याय
{ – 2, – 1, 0, 1, 2, …}
{ – 1, 0, 1, 2, …}
{0, 1, 2, 3, …}
`{x : x ∈"R",x≥ -(3)/(2)}`
उत्तर
x ∈ W
3x + 11 ≥ x + 8
⇒ 3x – x ≥ 8 – 11
⇒ 2x ≥ -3
⇒ `x ≥ (-3)/(2)`
⇒ `x ≥ -1(1)/(2)`
Solution set = {0, 1, 2, 3, .....}.
APPEARS IN
संबंधित प्रश्न
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P - Q
If P = {x : 7x - 4 > 5x + 2, x ∈ R} and Q - {x : x - 19 ≥ 1 - 3x, x ∈ R}, represent the following solution set on different number lines:
P ∩ Q
Solve : 2 (x – 2) < 3x – 2, x ∈ { – 3, – 2, – 1, 0, 1, 2, 3} .
If x is a negative integer, find the solution set of `(2)/(3) + (1)/(3)` (x + 1) > 0.
Solve: `(2x - 3)/(4) ≥ (1)/(2)`, x ∈ {0, 1, 2,…,8}
List the solution set of `(11 - 2x)/(5) ≥ (9 - 3x)/(8) + (3)/(4)`, x ∈ N
Solve : 1 ≥ 15 – 7x > 2x – 27, x ∈ N
If x ∈ I, then the solution set of the inequation 1 < 3x + 5 ≤ 11 is
If x∈R, solve `2x - 3 ≥ x + (1 - x)/(3) > (2)/(5)x`
x(8 – x) > 0 and x ∈ N gives ______.