Advertisements
Advertisements
प्रश्न
If x ∈ W, then the solution set of the inequation 3x + 11 ≥ x + 8 is
विकल्प
{ – 2, – 1, 0, 1, 2, …}
{ – 1, 0, 1, 2, …}
{0, 1, 2, 3, …}
`{x : x ∈"R",x≥ -(3)/(2)}`
उत्तर
x ∈ W
3x + 11 ≥ x + 8
⇒ 3x – x ≥ 8 – 11
⇒ 2x ≥ -3
⇒ `x ≥ (-3)/(2)`
⇒ `x ≥ -1(1)/(2)`
Solution set = {0, 1, 2, 3, .....}.
APPEARS IN
संबंधित प्रश्न
If P = {x : 7x - 4 > 5x + 2, x ∈ R} and Q - {x : x - 19 ≥ 1 - 3x, x ∈ R}, represent the following solution set on different number lines:
P ∩ Q
List the solution set of 30 – 4 (2.x – 1) < 30, given that x is a positive integer.
If x is a negative integer, find the solution set of `(2)/(3) + (1)/(3)` (x + 1) > 0.
Given x ∈ {1, 2, 3, 4, 5, 6, 7, 9} solve x – 3 < 2x – 1.
Given x ∈ {1, 2, 3, 4, 5, 6, 7, 9}, find the values of x for which -3 < 2x – 1 < x + 4.
Solve : 1 ≥ 15 – 7x > 2x – 27, x ∈ N
If P is the solution set of – 3x + 4 < 2x – 3, x ∈ N and Q is the solution set of 4x – 5 < 12, x ∈ W, find
(i) P ∩ Q
(ii) Q – P.
If x ∈ W, then the solution set of the in equation 5 – 4x ≤ 2 – 3x is ______.
If x ∈ I, then the solution set of the inequation 1 < 3x + 5 ≤ 11 is
For 7 – 3x < x – 5, the solution is ______.