Advertisements
Advertisements
Question
If x ∈ W, then the solution set of the inequation 3x + 11 ≥ x + 8 is
Options
{ – 2, – 1, 0, 1, 2, …}
{ – 1, 0, 1, 2, …}
{0, 1, 2, 3, …}
`{x : x ∈"R",x≥ -(3)/(2)}`
Solution
x ∈ W
3x + 11 ≥ x + 8
⇒ 3x – x ≥ 8 – 11
⇒ 2x ≥ -3
⇒ `x ≥ (-3)/(2)`
⇒ `x ≥ -1(1)/(2)`
Solution set = {0, 1, 2, 3, .....}.
APPEARS IN
RELATED QUESTIONS
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P - Q
If P = {x : 7x - 4 > 5x + 2, x ∈ R} and Q - {x : x - 19 ≥ 1 - 3x, x ∈ R}, represent the following solution set on different number lines:
P ∩ Q
Given x ∈ {1, 2, 3, 4, 5, 6, 7, 9} solve x – 3 < 2x – 1.
List the solution set of `(11 - 2x)/(5) ≥ (9 - 3x)/(8) + (3)/(4)`, x ∈ N
`x/(2) + 5 ≤ x/(3) + 6` where x is a positive odd integer.
`(2x + 3)/(3) ≥ (3x - 1)/(4)` where x is positive even integer.
Solve : 1 ≥ 15 – 7x > 2x – 27, x ∈ N
If x ∈ I, then the solution set of the inequation 1 < 3x + 5 ≤ 11 is
If x ∈ R, the solution set of 6 ≤ – 3 (2x – 4) < 12 is ______.
If x∈R, solve `2x - 3 ≥ x + (1 - x)/(3) > (2)/(5)x`