Advertisements
Advertisements
प्रश्न
If x ∈ { – 3, – 1, 0, 1, 3, 5}, then the solution set of the inequation 3x – 2 ≤ 8 is
पर्याय
{ – 3, – 1, 1, 3}
{ – 3, – 1, 0, 1, 3}
{ – 3, – 2, – 1, 0, 1, 2, 3}
{ – 3, – 2, – 1, 0, 1, 2}
उत्तर
x ∈ { -3, -1, 0, 1, 3, 5}
3x – 2 ≤ 8
⇒ 3x ≤ 8 + 2
⇒ 3x ≤ 10
⇒ x ≤ `(10)/(3)`
⇒ x < `3(1)/(3)`
Solution set = { -3, -1, 0, 1, 3}
APPEARS IN
संबंधित प्रश्न
Solve the given inequation and graph the solution on the number line.
2y – 3 < y + 1 ≤ 4y + 7, y ∈ R
If P = { x : -3 < x ≤ 7, x ∈ R} and Q = { x : - 7 ≤ x < 3, x ∈ R} , represent the following solution set on the different number lines:
Q' ∩ P
If P = { x : -3 < x ≤ 7, x ∈ R} and Q = { x : - 7 ≤ x < 3, x ∈ R} , represent the following solution set on the different number lines:
P-Q
Solve: `(2x - 3)/(4) ≥ (1)/(2)`, x ∈ {0, 1, 2,…,8}
`(2x + 3)/(3) ≥ (3x - 1)/(4)` where x is positive even integer.
Solve : 1 ≥ 15 – 7x > 2x – 27, x ∈ N
If x ∈ W, then the solution set of the inequation 3x + 11 ≥ x + 8 is
If x ∈ W, then the solution set of the in equation 5 – 4x ≤ 2 – 3x is ______.
Solve the inequation:
6x – 5 < 3x + 4, x ∈ I
Solve the inequation : `(5x + 1)/(7) - 4 (x/7 + 2/5) ≤ 1(3)/(5) + (3x - 1)/(7), x ∈ "R"`