Advertisements
Advertisements
प्रश्न
How do you defi ne variance in terms of Mathematical expectation?
उत्तर
The variance of X is defined by
Var(X) = `sum[x - "E"("x")]^2 "p"(x)`
If X is discrete random variable with probability mass function p(x).
Var(X) = `int_-oo^oo [x - "E"("X")]^2 "f"_x (x) "d"x`
If X is continuous random variable with probability density function fx (x).
APPEARS IN
संबंधित प्रश्न
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:((4 - x)/6, x = 1"," 2"," 3),(0, "otherwise"):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/2 "e"^(x/2), "for" x > 0),(0, "otherwise"):}`
A lottery with 600 tickets gives one prize of ₹ 200, four prizes of ₹ 100, and six prizes of ₹ 50. If the ticket costs is ₹ 2, find the expected winning amount of a ticket
Choose the correct alternative:
Consider a game where the player tosses a six-sided fair die. If the face that comes up is 6, the player wins ₹ 36, otherwise he loses ₹ k2, where k is the face that comes up k = {1, 2, 3, 4, 5}. The expected amount to win at this game in ₹ is
Choose the correct alternative:
A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation of X is
Define Mathematical expectation in terms of discrete random variable
A person tosses a coin and is to receive ₹ 4 for a head and is to pay ₹ 2 for a tail. Find the expectation and variance of his gains
Choose the correct alternative:
Value which is obtained by multiplying possible values of a random variable with a probability of occurrence and is equal to the weighted average is called
Choose the correct alternative:
Given E(X) = 5 and E(Y) = – 2, then E(X – Y) is
Choose the correct alternative:
An expected value of a random variable is equal to it’s