Advertisements
Advertisements
Question
How do you defi ne variance in terms of Mathematical expectation?
Solution
The variance of X is defined by
Var(X) = `sum[x - "E"("x")]^2 "p"(x)`
If X is discrete random variable with probability mass function p(x).
Var(X) = `int_-oo^oo [x - "E"("X")]^2 "f"_x (x) "d"x`
If X is continuous random variable with probability density function fx (x).
APPEARS IN
RELATED QUESTIONS
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(2(x - 1), 1 < x ≤ 2),(0, "otherwise"):}`
Four fair coins are tossed once. Find the probability mass function, mean and variance for a number of heads that occurred
A commuter train arrives punctually at a station every half hour. Each morning, a student leaves his house to the train station. Let X denote the amount of time, in minutes, that the student waits for the train from the time he reaches the train station. It is known that the pdf of X is
`f(x) = {{:(1/30, 0 < x < 30),(0, "elsewhere"):}`
Obtain and interpret the expected value of the random variable X
The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function
`f(x) = {{:(3"e"^(-3x), x > 0),(0, "eleswhere"):}`
Find the expected life of this electronic equipment
The probability density function of the random variable X is given by
`f(x) = {{:(16x"e"^(-4x), x > 0),(0, x ≤ 0):}`
find the mean and variance of X
Let X be a continuous random variable with probability density function
`"f"_x(x) = {{:(2x",", 0 ≤ x ≤ 1),(0",", "otherwise"):}`
Find the expected value of X
Define Mathematical expectation in terms of discrete random variable
Choose the correct alternative:
If X is a discrete random variable and p(x) is the probability of X, then the expected value of this random variable is equal to
Choose the correct alternative:
Which of the following is not possible in probability distribution?
Choose the correct alternative:
E[X – E(X)] is equal to