Advertisements
Advertisements
Question
Four fair coins are tossed once. Find the probability mass function, mean and variance for a number of heads that occurred
Solution
Let X be the random variable that denotes the number of heads when four coins are tossed once.
X ={0, 1, 2, 3}
n(S) = 16
Values of random variable | 0 | 1 | 2 | 3 | 4 | Total |
Number of elements in inverse image | 1 | 4 | 6 | 4 | 1 | 16 |
Probability mass function
x | 0 | 1 | 2 | 3 | 4 |
F(x) | `1/16` | `4/16` | `6/16` | `4/16` | `1/16` |
Mean: `mu = "E"("X")`
= `0 xx 1/16 + 1 xx 4/16 + 2 xx 6/6 + 3 xx 4/16 + 4 xx 1/16`
= `32/16`
= 2
Variance: `"E"("X"^2)`
= `0^2 xx 1/16 + 1^2 xx 4/16 + 2^2 xx 6/16 + 3^2 xx 4/16 + 4^2 xx 1/16`
= `0 + 4/16 + 24/16 + 36/16 + 16/16`
= `80/16`
= 5
Var(X) = E(X2) – [E(X)]2
= 5 – 4
= 1
APPEARS IN
RELATED QUESTIONS
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:((4 - x)/6, x = 1"," 2"," 3),(0, "otherwise"):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(2(x - 1), 1 < x ≤ 2),(0, "otherwise"):}`
For the random variable X with the given probability mass function as below, find the mean and variance.
`f(x) = {{:(1/2 "e"^(x/2), "for" x > 0),(0, "otherwise"):}`
Two balls are drawn in succession without replacement from an urn containing four red balls and three black balls. Let X be the possible outcomes drawing red balls. Find the probability mass function and mean for X
The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function
`f(x) = {{:(3"e"^(-3x), x > 0),(0, "eleswhere"):}`
Find the expected life of this electronic equipment
The probability density function of the random variable X is given by
`f(x) = {{:(16x"e"^(-4x), x > 0),(0, x ≤ 0):}`
find the mean and variance of X
Choose the correct alternative:
Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus. Then E(X) and E(Y) respectively are
Choose the correct alternative:
If X is a binomial random variable with I expected value 6 and variance 2.4, Then P(X = 5) is
Find the expected value for the random variable of an unbiased die
Let X be a continuous random variable with probability density function
f(x) = `{{:(3/x^4",", x ≥ 1),(0",", "otherwise"):}`
Find the mean and variance of X
In investment, a man can make a profit of ₹ 5,000 with a probability of 0.62 or a loss of ₹ 8,000 with a probability of 0.38. Find the expected gain
The number of miles an automobile tire lasts before it reaches a critical point in tread wear can be represented by a p.d.f.
f(x) = `{{:(1/30 "e"^(- x/30)",", "for" x > 0),(0",", "for" x ≤ 0):}`
Find the expected number of miles (in thousands) a tire would last until it reaches the critical tread wear point
Choose the correct alternative:
E[X – E(X)] is equal to
Choose the correct alternative:
A listing of all the outcomes of an experiment and the probability associated with each outcome is called
Choose the correct alternative:
The distribution function F(x) is equal to
Prove that if E(X) = 0, then V(X) = E(X2)
What is the expected value of a game that works as follows: I flip a coin and if tails pay you ₹ 2; if heads pay you ₹ 1. In either case, I also pay you ₹ 0.50
The time to failure in thousands of hours of an important piece of electronic equipment used in a manufactured DVD player has the density function
f(x) = `{{:(2"e"^(-2x)",", x > 0),(0",", "otherwise"):}`
Find the expected life of this piece of equipment