Advertisements
Advertisements
प्रश्न
Four fair coins are tossed once. Find the probability mass function, mean and variance for a number of heads that occurred
उत्तर
Let X be the random variable that denotes the number of heads when four coins are tossed once.
X ={0, 1, 2, 3}
n(S) = 16
Values of random variable | 0 | 1 | 2 | 3 | 4 | Total |
Number of elements in inverse image | 1 | 4 | 6 | 4 | 1 | 16 |
Probability mass function
x | 0 | 1 | 2 | 3 | 4 |
F(x) | `1/16` | `4/16` | `6/16` | `4/16` | `1/16` |
Mean: `mu = "E"("X")`
= `0 xx 1/16 + 1 xx 4/16 + 2 xx 6/6 + 3 xx 4/16 + 4 xx 1/16`
= `32/16`
= 2
Variance: `"E"("X"^2)`
= `0^2 xx 1/16 + 1^2 xx 4/16 + 2^2 xx 6/16 + 3^2 xx 4/16 + 4^2 xx 1/16`
= `0 + 4/16 + 24/16 + 36/16 + 16/16`
= `80/16`
= 5
Var(X) = E(X2) – [E(X)]2
= 5 – 4
= 1
APPEARS IN
संबंधित प्रश्न
If µ and σ2 are the mean and variance of the discrete random variable X and E(X + 3) = 10 and E(X + 3)2 = 116, find µ and σ2
A lottery with 600 tickets gives one prize of ₹ 200, four prizes of ₹ 100, and six prizes of ₹ 50. If the ticket costs is ₹ 2, find the expected winning amount of a ticket
Choose the correct alternative:
Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus. Then E(X) and E(Y) respectively are
Choose the correct alternative:
If P(X = 0) = 1 – P(X = 1). If E[X] = 3 Var(X), then P(X = 0) is
Let X be a random variable defining number of students getting A grade. Find the expected value of X from the given table:
X = x | 0 | 1 | 2 | 3 |
P(X = x) | 0.2 | 0.1 | 0.4 | 0.3 |
The following table is describing about the probability mass function of the random variable X
x | 3 | 4 | 5 |
P(x) | 0.2 | 0.3 | 0.5 |
Find the standard deviation of x.
How do you defi ne variance in terms of Mathematical expectation?
State the definition of Mathematical expectation using continuous random variable
Choose the correct alternative:
Demand of products per day for three days are 21, 19, 22 units and their respective probabilities are 0.29, 0.40, 0.35. Profit per unit is 0.50 paisa then expected profits for three days are
Choose the correct alternative:
If X is a discrete random variable and p(x) is the probability of X, then the expected value of this random variable is equal to
Choose the correct alternative:
A discrete probability distribution may be represented by
Choose the correct alternative:
A probability density function may be represented by
Choose the correct alternative:
E[X – E(X)]2 is
Choose the correct alternative:
An expected value of a random variable is equal to it’s
Choose the correct alternative:
The distribution function F(x) is equal to
Prove that if E(X) = 0, then V(X) = E(X2)
Prove that V(X + b) = V(X)
The time to failure in thousands of hours of an important piece of electronic equipment used in a manufactured DVD player has the density function
f(x) = `{{:(2"e"^(-2x)",", x > 0),(0",", "otherwise"):}`
Find the expected life of this piece of equipment